top of page
  • White LinkedIn Icon
  • White Twitter Icon
  • White Instagram Icon

About me


I am an Instrument Project Scientist/Astronomer at the UK Astronomy Technology Centre (ATC) in Edinburgh.

I am currently the Project Scientist for two major astronomical facilities under construction: the Multi-Object Optical and Near-IR Spectrograph (MOONS) for the Very Large Telescope (VLT) and the High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) for the Extremely Large Telescope (ELT). I am also the local Instrument Scientist for the IR Spectrograph of the High Resolution Spectrograph (HIRES) for the ELT.

I am leading the design of the Reddened Milky Way Survey (REDWAY) with VLT-MOONS (see here), a member of the Vista Variables in the Via Lactea (VVV) photometric survey and its extension (VVV-X), member of the WEAVE low-resolution survey of the Galactic disk, and an Affiliated Principal Investigator of LSST:UK. I also lead the WEAVE Galactic Archaeology Quality Assurance Group.


My research is focused on mapping the stellar population and structure of the inner Galaxy. I am currently leading several projects to place the properties of the Milky Way bulge in the general context of bulge formation by observing nearby edge-on galaxies. 

I am also a strength training/powerlifting enthusiast and strong proponent of a plant-based nutrition for performance, health and the environment. 


Dr. Oscar A Gonzalez

Instrument Project Scientist/Astronomer

UK Astronomy Technology Centre

Scientific Interests

  • Astronomical Instrumentation

  • Galactic Archaeology: the history of the Milky Way

  • The formation and evolution of X-shaped bulges

  • Dust extinction and the reddening law of the inner Milky Way


Project Scientist/Astronomer


As part of STFC’s National Laboratories, the UKATC is the UK’s national laboratory for the design and development of astronomical instrumentation. My primary role is to support the instrumentation projects undertaken by the lab and pursue my own research programmes.


IfA Edinburgh Visiting Fellow


During the 4th year of the ESO fellowship, I was hosted by the Institute for Astronomy at the University of Edinburgh with 100% research time.


ESO Postdoctoral Fellow


Paranal support astronomer of UT1 (FORS2, CRIRES, KMOS, and NACO), Instrument Scientist of VIRCAM@VISTA, and Instrument Fellow of FORS2. I completed 240 nights as UT1 Support Astronomer and 40 nights as Night Shift Coordinator at the VLT


PhD in Astronomy


Thesis title: “Unfolding the Galactic Bulge”

Advisors: Prof. Dr. Ortwin Gerhard (LMU) and Dr. Marina Rejkuba

Thesis title: “Unfolding the Galactic Bulge”

Degree: PhD in Astronomy, Magna Cum Laude


Licenciatura (diploma) in Astronomy


Thesis title: "Lithium rich RGB stars in the Galactic Bulge”

Advisor: Prof. Dr. Manuela Zoccali

Degree: Licenciatura (Diploma) in Astronomy, Maximum Distinction


Design, construction, and operation of optical/IR MOS/IFU instrumentation

High-resolution spectroscopy and spectral synthesis

Integral Field Unit Spectroscopy

Photometry and Image processing

Project management and effective leadership

Python, IDL, R - Advanced

English - Fluent

Spanish - Mother Tongue

Screenshot 2019-02-18 14.19.51.png
The structure behind the Galactic bar traced by red clump stars in the VVV survey

Gonzalez et al. 2018, MNRAS, 481L, 130G


We show that a secondary, fainter clump seen in the luminosity function of the galactic at low latitudes (|b|<2°) traces a spiral arm structure behind the galactic bar. This result suggests that studies aiming to characterise the bulge red-giant branch bump should avoid these low galactic latitudes and it highlights the need to include this structural component in future modelling of the Galactic bar

Screenshot 2019-02-18 14.15.35.png
First stellar spectroscopy in Leo P

Evans et al. 2019, A&A, 622A, 129E


The low oxygen abundance (3% solar) and relative proximity ( 1.6 Mpc) of Leo P, a low-luminosity dwarf galaxy discovered in 2013, provides a tantalising opportunity to investigate massive stars with near-primordial compositions. Here we introduce observations of Leo P with the Multi Unit Spectroscopic Explorer (MUSE) instrument on the VLT, which have revealed its spectroscopic content for the first time.

Screenshot 2019-02-18 14.23.37.png
Formation, vertex deviation and age of the Milky Way's bulge: input from a cosmological simulation with a late-forming bar

Debattista et al. 2019, submitted to MNRAS


We present the late-time evolution of m12m, a cosmological simulation of a Milky Way-like galaxy from the FIRE project. We show that the evolution of the model exhibits behaviours typical of kinematic fractionation, with a bar weaker in older populations, an X-shape traced by the younger, metal-rich populations and a prominent X-shape in the edge-on mean metallicity map, as seen in the Milky Way.

bottom of page